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Abstract: Accurate estimates of cell state of power (SOP) are critical to maximize battery-
pack performance and safety. Since SOP is not directly measurable, algorithms having varying
complexity are implemented to compute SOP estimates. Input to these algorithms are the cell’s
measurable quantities, acquired with sensors whose characteristics are defined by precision,
accuracy, and synchronicity. This paper provides an evaluation of the performance of SOP
estimation algorithms versus the integrity of the measurements provided by the cell voltage,
current, and temperature sensors. Overviews of state-of-charge and cell-resistance estimation,
required by SOP, are also shown. We employ model-based simulation to compare the ideal
case having zero sensor measurement error against real-life sensor performances which exhibit
measurement offset, noise and nonsynchronicity. We consider typical usage scenarios in electric-
vehicle and ESS applications, cell chemistry, estimation method, and sensor performance.
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1. INTRODUCTION

Battery-management systems (BMS) must compute real-
time estimates of the level of power a cell can sustain over a
future time horizon, termed state of power (SOP), relying
on measurements of voltage, current, and temperature.
The research question that we address in this paper is:How
do SOP estimates depend on sensor total measurement
error (TME) and synchronization error when using total-
least-squares (TLS) methods to make the underlying cell-
resistance estimates and the bisection algorithm to esti-
mate SOP? (Prior papers in this series ask similar ques-
tions relating to state-of-charge (SOC) and state-of-health
(SOH) estimates: Plett and McVeigh (July 2024a,b).) De-
spite the importance of this question, we are unaware
of literature that addresses it systematically. The closest
paper we could find was Zeng et al. (2023), which considers
sensitivity of capacity estimates to random sensor faults,
not to measurement and synchronization error.

We use a simulation approach (cf. Fig. 1). We first create
a synthetic “truth” dataset by simulating an equivalent-
circuit model (ECM) for different scenarios. We then
add measurement and synchronization errors to the truth
outputs. The modified data are used as input to SOC-
and SOH-estimation methods, leading to equivalent-series
resistance estimates, R̂0. The R̂0 values are used with bi-
section to estimate SOP. We evaluate results by comparing
estimated SOP to truth SOP from the original simulation.

2. SIMULATION APPROACH

The simulation approach for generating the dataset on
which the SOH estimators are evaluated is discussed in
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Fig. 1. Flowchart of the simulation-based strategy.
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Fig. 2. An ESC-type ECM having a single resistor–
capacitor “Voigt” network.

detail in Plett and McVeigh (July 2024a). Due to space
constraints, we present only the most relevant details here.

The dataset was generated by simulating “enhanced-self-
correcting” (ESC) ECMs per Plett (2015a) (cf. Fig. 2). In
this model, cell SOC zk is modeled as:

zk+1 = zk − (∆t/Q)ik, (1)



where ∆t is the sampling period in seconds and Q is
cell total capacity in ampere-seconds (the sign convention
assumes discharge current is positive and charge current
is negative). Voltage of capacitor Ci is modeled as:

vci,k+1 = exp (−∆t/τ) vci,k+Ri (1− exp (−∆t/τ)) ik, (2)

where τ is the R–C time constant in seconds and Ri is the
value of the resistor in the R–C pair in ohms. Dynamic
hysteresis fraction is modeled as:

hk+1 = exp

(
ikγ∆t

Q

)
hk−

(
1− exp

(
ikγ∆t

Q

))
sgn(ik), (3)

where γ is a hysteresis rate factor. Cell voltage is then:

vk = OCV(zk) +Mhk −
∑

ivci,k − ikR0. (4)

where OCV(·) is the open-circuit voltage of the cell at
a given SOC, M is the hysteresis maximum magnitude,
and R0 is the cell’s equivalent-series resistance. Note that
the model can support multiple R–C branches (“Voigt”
networks) if we implement individual values of Ri and Ci

for each R–C pair in Eq. (2).

The simulation models incorporated three R–C Voigt
networks, and the SOC-estimation methods instead used
models of the same cells having only two Voigt networks
to account for realistic truth/model mismatch. The models
used in this study were generated using data collected in
the laboratory from A123 lithium-iron-phosphate (LFP)
cells and Panasonic nickel-manganese-cobalt oxide (NMC)
cells using the methods presented in Plett (2015a).

Automotive applications are represented via an urban dy-
namometer driving schedule (UDDS) profile and energy-
storage applications are represented via a fast frequency
response (FFR) profile. Eight test cases per scenario inves-
tigated the sensitivity of results to algorithm initialization.
For each scenario/test-case combination, we simulated the
ECM using noise-free inputs and a sampling rate of 100Hz.

After creating the noise-free dataset, dc biases and pseudo-
random Gaussian noises were added to the current, volt-
age, and temperature variables per different sensor TME
specifications. The voltage measurements were shifted
with respect to the current and temperature measurements
per different sensor synchronization specifications.

Table 1 summarizes the simulation-study settings. Table 2
itemizes the eight simulation cases considered for each
scenario. Table 3 lists the assumed sensor specifications
derived from publicly available datasheets. SOC estimates
were made using sigma-point Kalman filters (SPKF) tuned
to each scenario per Plett (2015b).

3. RESISTANCE ESTIMATION METHODS

SOP estimates rely on estimates of cell resistance. Here,
we consider two TLS-based approaches from Plett and
McVeigh (July 2024b), which we review below.

3.1 Method 1: The “simple method”

Consider the ECM’s discrete-time voltage equation, Eq. (4).
One approach to estimating R0 is to subtract voltages at
two adjacent time samples, per Plett (2015b):

vk = OCV(zk) +Mhk −
∑

i vci,k − ikR0

vk−1 = OCV(zk−1) +Mhk−1 −
∑

i vci,k−1 − ik−1R0

vk−vk−1 ≈ R0 (ik−1 − ik) ,

Table 1. Simulation-study parameter settings.

Test parameter Parameter settings

Scenarios {UDDS for NMC and LFP; FFR for LFP}
Temperature {25 ◦C (ambient)}
Cases {z0 initialization error of ±1%}, {Q

initialization error of ±1%}, {truth data
simulated using model having 3 R–C pairs
and SPKF SOC estimates made based
using model having 2 R–C pairs} The eight
cases of Table 2 span these conditions.

Sensor models dc bias and random error specified for
seven sensors in Table 3.

Sensor latencies {0ms, ±10ms} between V and I

Table 2. The eight pseudo-random sim cases.

Category \ Case 1 2 3 4

Init. SOC-est. error −1% −1% −1% −1%
Capacity estimate Q/0.99 Q/0.99 Q/0.99 Q/0.99
Current-sensor bias −max −max −max −max
Voltage-sensor bias +max +max −max −max
Temp.-sensor bias +max −max +max −max

Category \ Case 5 6 7 8

Init. SOC-est. error +1% +1% +1% +1%
Capacity estimate 0.99Q 0.99Q 0.99Q 0.99Q
Current-sensor bias +max +max +max +max
Voltage-sensor bias +max +max −max −max
Temp.-sensor bias +max −max +max −max

Table 3. Sensor TME settings for the studies.

Sensor Label Parameter Vehicle setting ESS setting

Voltage
SV1

dc bias 0.35mV 0.35mV
noise 1σ 142 µV 142 µV

SV2
dc bias 3.5mV 3.5mV
noise 1σ 1.5mV 1.5mV

Current
(C-rate)

SI1
dc bias 0.284×10−3 0.071×10−3

noise 1σ 0.130×10−3 0.0325×10−3

SI2
dc bias 4.2×10−3 1.05×10−3

noise 1σ 0.07×10−3 0.0175×10−3

SI3
dc bias 18×10−3 4.5×10−3

noise 1σ 24×10−3 6×10−3

Temp.
ST1

dc bias 0.4 ◦C 0.4 ◦C
noise 1σ 0.013 ◦C 0.013 ◦C

ST2
dc bias 5 ◦C 5 ◦C
noise 1σ 0.013 ◦C 0.013 ◦C

where we use our knowledge that that cell SOC, diffusion
voltages, and hysteresis change slowly relative to ik. So,
we can formulate the R0-estimation problem as:

vk − vk−1︸ ︷︷ ︸
y

= R0 ik−1 − ik︸ ︷︷ ︸
x

, (5)

which has the linear form y = R0x. By noting that both y
and x have measurement errors, we recognize that this is
a TLS problem and not a standard ordinary-least-squares
problem. So, we use approximate weighted total least
squares (AWTLS) method from Plett (2011) to estimate
R0 based on this model. We call this the “simple” method.

To implement the method, the variable x at any timestep
is simply the difference in current between the prior
and present timestep and the variable y is the difference
between the present and prior voltages. Assuming that



measurement noise is white, σ2
x is set to twice the variance

of the current-sensor random error and σ2
y is set to twice

the variance of the voltage-sensor random error.

3.2 Method 2: The “SPKF method”

R0 estimates from the “simple method” lose quality as
ik−1 − ik → 0 and lose meaning if voltage/current-
sensor synchronization is inexact. An alternate method can
improve estimates, using on signals produced by the SPKF
state estimator from Plett and McVeigh (July 2024a).

The “SPKF method” is developed from the cell voltage
equation, replacing true quantities with their estimates
from the SPKF, denoted by the “hat” symbol (̂·):

v̂k = OCV(ẑk) +Mĥk −
∑

iv̂ci,k − imeas
k R0, (6)

where v̂ci,k = RiîRi,k from the estimator. Rearranging,

−

(
v̂k −OCV(ẑk)−Mĥk +

∑

i

v̂ci,k

)

︸ ︷︷ ︸
y

= R0 i
meas
k︸ ︷︷ ︸
x

, (7)

where we once again see the linear structure y = R0x, and
where both y and x have noises associated.

To implement a TLS estimator using this relationship, we
exported ẑk, ĥk, and v̂ci,k from the SPKF state estimator,
along with their covariances σ2

z,k, σ
2
h,k, and σ2

vci ,k
. Com-

puting y is straightforward and x is simply the measured
current and no computation is needed to find its value.

The variance σ2
x needed by the TLS method is set to the

current-sensor variance Σw̃ tuned to optimize the SPKF.
The time-varying variance σ2

y,k is computed as:

σ2
y,k = σ2

v +

(
dOCV(ẑk)

dẑk

)2

σ2
z,k +M2σ2

h,k +
∑

i

σ2
vci ,k

,

where σ2
v = Σṽ, the voltage-sensor variance tuned to opti-

mize the SPKF. This computation assumes that the uncer-
tainties are uncorrelated (unlikely to be true in general).

Summarizing, the “SPKF method” estimates R0 using an
alternate TLS approach. Again, we used AWTLS.

4. SOP ESTIMATION

We compute estimates of maximum dis/charge power
such that cell voltage over a future time horizon of T
samples will not exceed the range [vmin, vmax] and cell
SOC will not exceed the range [zmin, zmax]. We assume
a mathematical model of cell dynamics in a discrete-time
state-space form (Chen, 1999):

xk+1 = f
(
xk, ik

)
(8)

vk = g
(
xk, ik

)
, (9)

where xk =
[
zk vTc,k hk

]T
is the system’s “state” and f(·)

and g(·) are functions chosen to model the cell dynamics
(i.e., f(·) combines Eqs. (1), (2), and (3), and g(·) is given
by Eq. (4)). We can use this model to predict cell voltage T
samples into the future by vk+T = g

(
xk+T , uk+T

)
, where

xk+T may be found by simulating Eq. (8) for T time
samples. We assume that the input ik remains constant
from time index k to k + T .

We use the method from Plett (2004), which computes
discharge and charge current limits based on [vmin, vmax],
idis,voltmax and ichg,voltmin , by searching for the ik that solves

vmin=g
(
xk+T , ik+T

)
, or 0=g

(
xk+T , ik+T

)
−vmin (10)

to find idis,voltmax , and by looking for the ik that solves

vmax=g
(
xk+T , ik+T

)
, or 0=g

(
xk+T , ik+T

)
−vmax (11)

to find ichg,voltmin . 1 When Eq. (8) is linear, as it is with the
ESC model for a constant input ik, we can write it as
xk+1 = Axk +Bik where A and B are constant matrices.
Then, for ik constant from time k to k + T , we have

xk+T = ATxk +
(∑T−1

j=0 A
T−1−jB

)
ik.

Most of these terms may be pre-computed without knowl-
edge of ik to speed the search.

We compute current limits based on [zmin, zmax] as:

idis,socmax = Q (zk(t)− zmin) /(T∆t) (12)

ichg,socmin = Q (zk(t)− zmax) /(T∆t). (13)

Overall current limits may be computed as

idismax = min
(
imax, i

dis,soc
max , idis,voltmax

)
(14)

ichgmin = max
(
imin, i

chg,soc
min , ichg,voltmin

)
, (15)

where battery-pack electronics require that ik remain in
[imin, imax]. Signed SOP estimates are then calculated as

P chg
min = ichgmin g(xk+T , i

chg
min)

P dis
max = idismax gk(xk+T , i

dis
max).

Bisection search: To solve (10) and (11) we require a
method to solve for a root of a nonlinear equation. Here,
we use the bisection search algorithm to do so (Press et al.,
1992). This method looks for a root of f(x) (i.e, a value
of x such that f(x) = 0) where it is known a priori that
the root lies between values x1 < root <x2. One way of
knowing that a root lies in this interval is that the sign of
f(x1) is different from the sign of f(x2).

Each iteration of the bisection search evaluates the func-
tion at the midpoint xmid = (x1 + x2)/2. Based on the
sign of the evaluation, either x1 or x2 is replaced by xmid

to retain different signs on f(x1) and f(x2), halving the
uncertainty in the root location. The algorithm repeats
this iteration until the interval |x2 − x1| is as small as de-
sired. If ε is the desired root resolution, then the algorithm
will require at most ⌈log2 (|x2 − x1|/ε)⌉ iterations.

Finding maximum/minimum current: Bisection is incor-
porated in the overall algorithm as follows. First, three
simulations are performed to determine cell voltages T
samples into the future for cell current ik = 0, ik = imin,
and ik = imax. If cell voltages are predicted to be between
vmin and vmax for the maximum dis/charge rates, then
these maximum rates may be used. If the cell voltages,
even during rest, are outside of bounds, then set the
maximum rates to zero. Otherwise, we know that the
true maximum rate may be found by bisecting between
rate equal to zero and its maximum value. Bisection is
performed between current limits (imin, 0) or (0, imax).

1 Note that these are signed quantities, so maximum absolute charge
current corresponds to minimum signed charge current.



Table 4. R0-estimate results using the simple and SPKF methods. Columns tabulate normalized
RMSE in percent and percent of time that true resistance is outside the estimator’s confidence

bounds. Entries denoted ‘—’ represent values that are too large to display in the table.
Latency = −10ms (values in (%)) Latency = 0ms (values in (%)) Latency = 10ms (values in (%))

Simple Simple SPKF SPKF Simple Simple SPKF SPKF Simple Simple SPKF SPKF
SI SV ST Profile Cell RMSE Bounds RMSE Bounds RMSE Bounds RMSE Bounds RMSE Bounds RMSE Bounds

1 1 1
UDDS NMC 99.92 100.00 1.55 0.00 0.04 0.00 1.52 0.00 100.01 100.00 1.60 0.00
UDDS LFP 99.87 100.00 3.40 3.17 0.06 0.00 3.43 3.72 99.97 100.00 3.30 2.82
FFR LFP 99.76 100.00 2.56 0.00 0.11 0.00 3.63 0.00 99.84 100.00 2.60 0.00

1 2 2
UDDS NMC 99.77 100.00 7.34 0.00 0.39 4.43 7.35 0.00 99.96 100.00 7.33 0.00
UDDS LFP 99.93 100.00 8.59 0.00 0.56 0.00 8.61 0.00 99.92 100.00 8.55 0.00
FFR LFP 100.12 100.00 24.29 0.00 0.87 0.00 24.82 0.00 99.87 100.00 24.27 0.00

2 1 1 FFR LFP 99.76 100.00 12.72 0.00 0.11 0.00 15.01 0.00 99.84 100.00 12.64 0.00

2 2 2 FFR LFP 100.12 100.00 25.85 0.00 0.87 0.00 26.61 0.00 99.87 100.00 25.82 0.00

3 1 1
UDDS NMC — 0.00 2.18 0.15 0.18 0.00 2.18 0.00 — 0.00 2.22 1.69
UDDS LFP — 0.64 29.65 0.00 0.18 0.00 29.69 0.00 — 0.20 29.57 0.00

3 2 2
UDDS NMC 99.66 100.00 8.06 0.00 0.56 1.56 8.05 0.00 99.82 100.00 8.07 0.00
UDDS LFP 100.14 100.00 11.54 0.00 0.99 6.73 11.53 0.00 100.02 100.00 11.56 0.00
FFR LFP 99.91 100.00 31.62 0.00 1.02 0.02 30.86 0.00 99.66 100.00 31.65 0.00

Table 5. SOP-estimate results based on R̂0 + 3σR0
from the simple and SPKFmethods. Columns

tabulate percent normalized RMSE and percent of time that SOP estimates exceed true SOP.

Latency = −10ms (values in (%)) Latency = 0ms (values in (%)) Latency = 10ms (values in (%))
Simple Simple SPKF SPKF Simple Simple SPKF SPKF Simple Simple SPKF SPKF

SI SV ST Profile Cell RMSE overest RMSE overest RMSE overest RMSE overest RMSE overest RMSE overest

1 1 1
UDDS NMC 232.60 99.85 6.32 0.00 1.12 2.02 6.33 0.00 233.27 99.85 6.30 0.00
UDDS LFP 192.17 99.96 7.79 0.24 1.71 99.35 7.81 0.22 192.69 99.96 7.75 0.25
FFR LFP 205.06 100.00 12.73 0.00 1.67 99.94 14.12 0.00 205.52 100.00 12.68 0.00

1 2 2
UDDS NMC 223.89 99.84 21.08 0.00 3.51 13.75 21.10 0.00 225.18 99.84 21.05 0.00
UDDS LFP 185.04 99.82 36.53 0.00 2.20 78.01 36.54 0.00 184.87 99.83 36.50 0.00
FFR LFP 192.37 99.95 84.92 0.00 1.97 60.95 84.97 0.00 191.22 99.96 84.91 0.00

2 1 1 FFR LFP 204.75 100.00 69.89 0.00 1.56 99.94 70.11 0.00 205.21 100.00 69.88 0.00

2 2 2 FFR LFP 192.22 99.95 76.18 0.00 1.98 59.15 76.32 0.00 191.07 99.96 76.18 0.00

3 1 1
UDDS NMC 104.77 0.33 6.35 0.02 5.59 0.46 6.36 0.01 100.10 0.12 6.33 0.03
UDDS LFP 107.18 0.20 79.14 0.00 9.15 50.43 79.14 0.00 99.78 0.06 79.14 0.00

3 2 2
UDDS NMC 223.09 99.91 16.98 0.00 10.43 17.91 16.96 0.00 223.96 99.91 16.97 0.00
UDDS LFP 186.19 99.87 37.31 0.00 3.33 65.86 37.32 0.00 185.34 99.87 37.28 0.00
FFR LFP 191.05 99.94 67.42 0.00 2.14 61.00 67.67 0.00 189.92 99.96 67.41 0.00

5. RESULTS AND DISCUSSION

5.1 Generating the noisy datasets

Noise-free truth datasets were simulated for the three
basic scenarios listed in Table 1. Then, pseudo-random
Gaussian noises were added to the current, voltage, and
temperature per the sensor specifications listed in Table 3.
The “max” (and “min”) entries Table 2 refer to adding (or
subtracting) the dc-bias value defined by the particular
sensor’s specification to (from) the true value. Cases 1–4
have the effect of trying to force the SOC estimate to be
greater than the truth at all times (since all profiles start
in the discharge direction). Cases 5–8 bias the estimate
in the other direction. These three variables are always
changed together to provide ± worst-case results.

Timing latency is assumed to impact only the voltage
signal. If the latency is negative, changes to cell voltage
precede changes to current and SOC (voltage is shifted left
compared with other signals). If the latency is positive,
voltage changes lag behind changes to current and SOC
(voltage is shifted right compared with other signals).

This modified dataset is used as input to the SOC-
estimation algorithms. Output SOC estimates and statis-
tics are used as inputs to the SOH algorithms that compute
resistance estimates R̂0. The SOP-estimation algorithm
is based on the nominal two R–C model, using signals
from the SOC-estimation SPKF, and with R0 replaced
by R̂0 + 3σR0

from the SOH-estimation algorithms. We
evaluate results by comparing the estimated SOP to the
truth SOP computed by executing the bisection method
on the three R–C model and using the noise-free dataset.

5.2 Estimates of R0

Table 4 lists numeric R0-estimation results, presenting
RMSE between R0 and R̂0 for the simple and SPKF
methods and listing the percentage of time that the
estimator confidence bounds do not encompass the true
value of R0. These results are similar to those presented
in (Plett and McVeigh, July 2024b); however, the prior
work considered sensor latencies of ±100ms whereas this
work investigates a more realistic ±10ms, which is the
limit of our present simulation capability.
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Fig. 3. Subset of resistance-estimation results, each plot for eight simulation cases for a single scenario and sensor
configuration. Thick lines are estimates; thin lines of the same color are the corresponding confidence bounds.

Fig. 3 shows the evolution of normalized R̂0/R0 estimates
over time for three example cases (the ideal result is
always 1.0). Each frame shows eight thick lines illustrating
R̂0 evolving over time for the eight cases of Table 2.
Thin lines of the same color draw the confidence bounds
predicted by the estimator. The top row plots typical
outputs from the simple method. We observe that the
simple method consistently fails when there is latency
between the voltage and current sensors—its estimates are
close to zero since the asynchronous voltage and current
signals have essentially no instantaneous correlation.

The bottom two rows of the figure illustrate typical results
using the SPKF method. Because the SPKF is a filter, it
provides estimates of ẑk, ĥk, and v̂ci,k that are reasonable,
despite any timing latencies. Therefore, the overall net
voltage depression caused by average current multiplied by
R0 becomes observable, whereas the simple method relies
on unfiltered instantaneous changes in voltage and current.
The biggest shortcoming of the SPKF method is that
its confidence intervals are wide, especially for the FFR
scenarios, and do not converge quickly over the course of
the simulations. Given longer datasets, we believe that the
SPKF method would improve its estimates and confidence
windows, although this remains a topic of future work.

5.3 Estimates of SOP

Table 5 lists numeric SOP-estimation results for T∆t =
10 s. It presents RMSE between true and estimated SOP
for the bisection method based on R̂0 estimates made by

the simple and SPKF methods; it also lists the percentage
of time that SOP is overestimated.

Fig. 4 shows the evolution of the unsigned SOP estimates
over time for the same examples as Fig. 3. The top row
illustrates typical outputs from the simple method. When
latency is nonzero, SOP is greatly overpredicted since
R̂0 ≈ 0. Even when latency is zero, SOP is often somewhat
overpredicted despite the conservative use of R̂0 + 3σR0

for
R0 (because σR0

is very small for the simple method).

The bottom two rows of the figure illustrate typical results
using the SPKF method. SOP accuracy shows no visible
degradation due to sensor latency, and very rarely over-
predicts available power. Despite wide confidence bounds
on R̂0 in the FFR scenario, SOP estimates are converging
toward the truth by the end of the simulation.

5.4 Discussion

Studying the numeric results of Tables 4 and 5, we make
several observations. All else being equal, the quality of
the sensors directly impacts the RMSE of the SOP es-
timates. High-accuracy synchronized sensors enable high-
accuracy SOP estimates that rarely overpredict true avail-
able power. Degrading any of the sensors causes a re-
sulting degradation in the quality of the SOP estimates.
Losing synchronization between voltage and current mea-
surements is likely to degrade SOP estimates unless ad-
vanced methods (such as the SPKF approach presented
here) are implemented. As a general rule, if an application
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Fig. 4. Subset of unsigned SOP-estimation results, each plot for eight simulation cases for a single scenario and sensor
configuration. Black line is truth; solid lines are discharge SOP and dashed lines are charge SOP. (Confidence
bounds are not plotted.)

specifies a maximum permitted SOP-estimation error, this
will impose requirements on the measurement error and
synchronization of the sensors.

6.SUMMARY

This paper has presented a framework for evaluating the
impact of sensor measurement error and synchronization
latency on SOP-estimation results. It has applied that
framework to a combination of scenarios encompassing
automotive and energy-storage use cases for different sen-
sor error levels and latencies. The study has confirmed
in a quantitive way the intuitive expectation that better
sensors enable an improvement in SOP estimation. Con-
sequently, a BMS that uses better sensors reduces the
required derating factors on those SOP metrics to compen-
sate for poor sensing, reducing overall cost and improving
sustainability and safety. This also implies that applica-
tions which specify maximum permitted SOP-estimation
error will have referred requirements imposed on the qual-
ity of the sensing subsystem of the BMS. Future work
might include evaluating other application profiles, differ-
ent timing latencies, sensor gain errors, and the impact of
cell-to-cell inhomogeneities in a battery pack for pack-level
SOP estimation.
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