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Abstract

Highly accurate and highly confident estimates of state of charge (SOC) and state of

health (SOH) are crucial prerequisites to maximizing the performance and safety achieved

from a battery pack. Neither SOC nor SOH are directly measurable, so algorithms of vary-

ing complexity and computational cost are employed to provide estimates of the values.

Required inputs to the algorithms are the measurable quantities of the cell, whose perfor-

mances are defined by precision, accuracy and synchronicity. This white paper provides

an evaluation of the impact on the performance of SOC and SOH estimation based on the

integrity of these inputs through execution of model-based simulation. It considers typical

usage scenarios in electric-vehicle and ESS applications, cell chemistry, estimation method

and measurement performance. The cell measurements under examination are: cell tem-

perature, cell voltage and cell current. The cell-model derivation and methods used in SOC

and SOH estimation are described.

1 Introduction

Battery-management systems must be able to compute estimates of state of charge (SOC) and

state of health (SOH). There exist many methods that create these estimates, each having its

own characteristics. However, the methods commonly rely on measurements of battery-cell

voltage, current, and temperature. We seek to address two questions in this white paper:

1. How do SOC estimates depend on sensor total measurement error and synchronization

error when using coulomb counting or sigma-point Kalman filters to make the estimates?

2. How do SOH estimates depend on sensor total measurement error and synchronization

error when using total-least-squares methods to make the estimates?

We use a simulation-based approach. First, we create a synthetic “truth” dataset by simulating

an equivalent-circuit model (ECM) for different simulation scenarios. Then, we add measure-

ment and synchronization errors to the truth outputs. This modified dataset is used as input to

the SOC-estimation algorithms. The output of these algorithms is used as input to the SOH

methods, which seek to estimate cell total capacity and equivalent-series resistance (ESR). We

evaluate results by comparing the estimates of SOC and SOH to the truth values from the orig-

inal simulation.

In this white paper, Sect. 2 describes the simulation approach in detail. Sect. 3 shares the differ-

ent SOC-estimation algorithms and their characteristics and Sect. 4 presents SOC-estimation

results. Sects. 5 and 6 share the different SOH-estimation algorithms and Sect. 7 presents

SOH-estimation results. Finally we offer some summary observations.

1This white paper expands on the results reported in: [1, 2].
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2 Simulation approach

This section presents our approach in more detail. Since the study depends on a synthetic data

set, we first describe the mathematical lithium-ion battery-cell model used to create this data

set. Then, we present the simulation scenarios that are used to evaluate the effect of different

levels of sensor measurement error and latencies on the algorithms.

2.1 The enhanced-self-correcting (ESC) cell model

The synthetic datasets were generated using simulations of cells described using an “enhanced-

self-correcting” (ESC) ECM [3]. Fig. 1 illustrates this model.
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Fig. 1: An ESC-type ECM having a single resistor–capacitor “Voigt” network.

In the ESC model, cell SOC z.t/ is modeled as:

dz.t/

dt
D ��.t/i.t/

3600Q
;

where �.t/ is coulombic efficiency (�.t/ D 1 on discharge and �.t/ � 1 on charge) and Q

is cell total capacity measured in ampere-hours. In this sign convention, discharge current is

positive and charge current is negative. Capacitor voltages are modeled as:

dvc.t/

dt
D �1

�
vc.t/ C R

�
i.t/;

where � is the R–C time constant in seconds and R is the value of the resistor in the R–C pair

in ohms. Dynamic hysteresis fraction is modeled as:

dh.t/

dt
D �

ˇ̌
ˇ̌�.t/i.t/


3600Q

ˇ̌
ˇ̌ .h.t/ C sgn.i.t/// ;

where 
 is a hysteresis decay-rate factor in seconds. Instantaneous hysteresis is modeled as:

s.t/ D
(

�sgn.s.t//; ji.t/j > 0I
s.t � "/; otherwise:

Cell voltage is then predicted as:

v.t/ D OCV.z.t// C Mh.t/ C M0s.t/ � vc.t/ � R0i.t/;

where OCV.�/ is the open-circuit voltage of the cell at a given SOC and where R0 is the cell’s

ESR. Note that the model can have multiple R–C branches (“Voigt” networks) if we implement

individual ODEs for each capacitor voltage and if we subtract the sum of capacitor voltages

when computing cell voltage.
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Fig. 2: UDDS drive profile (left); FFR profile (right).

2.2 Simulation-study framework

Cell type SOC-estimate quality depends on the chemistry and design of the cells. Lithium-

iron-phosphate (LFP) cells are commonly used for stationary storage and are increasingly being

used in automotive applications. From an algorithm perspective, they have a flat OCV relation-

ship and significant hysteresis, which can make estimating SOC well very challenging. Nickel-

manganese-cobalt-oxide (NMC) cells are commonly used in automotive and other applications

requiring high energy density. The models we used in this study were generated using data

collected in the laboratory from A123 LFP cells and Panasonic NMC cells using the methods

presented in [3].

Scenarios Automotive applications are represented using an urban dynamometer driving

schedule (UDDS) profile for both LFP and NMC cells. Energy-storage applications are repre-

sented using a fast frequency response (FFR) profile for LFP cells. For brevity, all of the results

presented here were for truth cell temperatures of 25 ıC.

The left frame of Fig. 2 presents a single normalized UDDS current profile. In the simulations,

the true initial cell SOC was 95 %. This profile was repeated 10 times to discharge the cell to

a final SOC of 5 %.2 The right frame of the figure presents a single normalized FFR current

profile. The true initial cell SOC was 50 % and the profile was repeated 94 times for a total

duration somewhat longer than 6 h. The FFR profile is nearly charge-neutral, so the final SOC

was approximately 44 %.

Cases Eight test cases investigated the sensitivity of results to algorithm initialization and

parameterization. We considered cases where cell SOC was incorrectly initialized by ˙1 %

and where cell capacity was incorrectly initialized by ˙1 %. The synthetic dataset was gener-

ated using ESC models having three Voigt networks and the SOC-estimation algorithms were

implemented using ESC models of the same cells using models having two Voigt networks to

account for realistic truth/model mismatch. The simulation cases also considered different lev-

els of sensor dc bias, noise, and timing latency between the voltage and current measurements.

2This is quite a wide operating window. If we were to use a narrower window—for example from 90 % to 10 %,

we would expect that the root-mean-squared errors on SOC estimates would be lower (it is easier to estimate SOC

over a narrower operating range) but that RMSE on total-capacity estimates would be higher (it is important to

move SOC as much as possible between updates to a total-capacity estimate). This study did not investigate the

tradeoffs in detail.
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Table 1: Simulation-study parameter settings.

Test parameter Parameter settings

Scenarios {UDDS for NMC and LFP; FFR for LFP}

Temperature {25 ıC (ambient)}

Cases {z0 initialization error of ˙1 %}, {Q initialization error of ˙1 %},

{truth data simulated using model having 3 R–C pairs and SPKF SOC

estimates made based using model having 2 R–C pairs} The eight

cases of Table 2 span these conditions.

Sensor models dc bias and random error specified for seven sensors in Table 3.

Sensor latencies {0 ms, ˙100 ms} between voltage and current measurements.

SOC algorithm {Coulomb counting, SPKF}

SOH algorithm {WLS and AWTLS-based methods}

Table 2: The eight pseudo-random simulation cases.

Category \ Case 1 2 3 4 5 6 7 8

Init. SOC-est. error �1 % �1 % �1 % �1 % C1 % C1 % C1 % C1 %

Capacity estimate Q=0:99 Q=0:99 Q=0:99 Q=0:99 0:99Q 0:99Q 0:99Q 0:99Q

Current-sensor bias � max � max � max � max C max C max C max C max

Voltage-sensor bias C max C max � max � max C max C max � max � max

Temp.-sensor bias C max � max C max � max C max � max C max � max

SOC-estimation algorithm The quality of SOC estimates depends on the estimation algo-

rithm used. Of the plethora of available algorithms [4], we select coulomb counting (a crude but

commonly used approach) and sigma-point Kalman filters (SPKF, a very good and generally

robust approach).

2.3 Implementing noise-free simulation scenarios

Table 1 summarizes the simulation-study parameter settings. Table 2 itemizes the eight simu-

lation cases considered for each scenario. Table 3 lists the assumed sensor specifications.

For each combination of scenario and case from Tables 1 and 2, we simulated an ESC model

using noise-free inputs: we discretized the ESC model equations using a sampling frequency

of 100 Hz [3] and implemented them in Simulink.

3 SOC estimation methods

3.1 Coulomb counting

In discrete time, cell SOC can be expressed as:

zŒk� D zŒ0� � �t

3600Q

k�1X

j D0

iappŒk�;
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Table 3: Sensor TME settings for the simulation study.

Sensor Label Parameter Vehicle setting ESS setting

Voltage

SV1
dc bias 0:35 mV 0:35 mV

noise 1� 142 �V 142 �V

SV2
dc bias 3:5 mV 3:5 mV

noise 1� 1:5 mV 1:5 mV

Current

(C-rate)

SI1
dc bias 0:284�10�3 0:071�10�3

noise 1� 0:130�10�3 0:0325�10�3

SI2
dc bias 4:2�10�3 1:05�10�3

noise 1� 0:07�10�3 0:0175�10�3

SI3
dc bias 18�10�3 4:5�10�3

noise 1� 24�10�3 6�10�3

Temp.

ST1
dc bias 0:4 ıC 0:4 ıC

noise 1� 0:013 ıC 0:013 ıC

ST2
dc bias 5 ıC 5 ıC

noise 1� 0:013 ıC 0:013 ıC

if we assume that coulombic efficiency is perfect, where iappŒk� is the true applied current and

�t is the sampling period. Coulomb counting estimates cell SOC as:

OzŒk� D OzŒ0� � �t

3600bQ

k�1X

j D0

imeasŒk�;

where OzŒ0� is the initial SOC estimate, bQ is the total-capacity estimate, and imeasŒk� D iappŒk� C
ibiasŒk� C inoiseŒk�. SOC-estimation error can then be expressed as:

QzŒk� D zŒk� � OzŒk�

D .zŒ0� � OzŒ0�/ �
 

1

Q
� 1

bQ

! 
�t

3600

k�1X

j D0

iappŒk�

!
C k

ibias�t

3600bQ
C �t

3600bQ

k�1X

j D0

inoiseŒk�; (1)

assuming that the dc-bias error is constant. The first term is the SOC-estimation error due to an

offset in the initial SOC estimate—this offset is never corrected since coulomb counting does

not have a feedback mechanism that might be able to make a correction. The second term is a

slope error due to an incorrect estimate of cell total capacity, which is also never corrected but

tends to cancel out over a charge-neutral cycle (error grows as a cell is discharged or charged,

but then decreases as the cell is subsequently charged or discharged, respectively). The third

term is a linear function of time that grows due to a current-sensor dc bias and is never corrected.

The final term is a zero-mean error caused by measurement noise; its actual value will grow

and shrink randomly, but its variance (uncertainty) increases linearly over time (assuming that

noises are uncorrelated). Because of the random sensor noise, every execution of the coulomb-

counting method will give a different result; however, we can compute the standard deviation

of the noise-induced SOC-estimate error as:

�Qznoise
Œk� D �i � �t �

p
k

3600bQ
; (2)
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Table 4: SOC-estimation results—using coulomb counting and SPKF—for the 13 scenarios

and three latencies considered in this work.

Latency = �100 ms Latency = 0 ms Latency = 100 ms

RMSE RMSE RMSB BNDX RMSE RMSB BNDX RMSE RMSB BNDX

SI SV ST Profile Cell(s) CC (%) KF (%) KF (%) KF (%) KF (%) KF (%) KF (%) KF (%) KF (%) KF (%)

1 1 1

UDDS NMC 1.54 0.27 0.56 0.00 0.27 0.56 0.00 0.27 0.56 0.00

UDDS LFP 1.54 0.38 1.29 0.00 0.38 1.29 0.00 0.38 1.29 0.00

FFR LFP 1.05 0.65 1.06 0.00 0.65 1.06 0.00 0.65 1.06 0.00

1 2 2

UDDS NMC 1.54 0.63 1.57 0.00 0.63 1.57 0.00 0.63 1.57 0.00

UDDS LFP 1.54 1.32 2.38 0.00 1.32 2.38 0.00 1.32 2.38 0.00

FFR LFP 1.05 1.05 1.13 0.00 1.05 1.13 0.00 1.05 1.13 0.00

2 1 1 FFR LFP 1.36 1.31 1.76 0.00 1.31 1.76 0.00 1.31 1.76 0.00

2 2 2 FFR LFP 1.36 1.33 1.85 0.00 1.33 1.85 0.00 1.33 1.85 0.00

3 1 1
UDDS NMC 5.43 0.28 0.57 0.00 0.28 0.57 0.00 0.28 0.57 0.00

UDDS LFP 5.43 4.82 8.94 0.00 4.82 8.94 0.00 4.82 8.94 0.00

3 2 2

UDDS NMC 5.43 0.77 1.78 0.00 0.77 1.78 0.00 0.77 1.78 0.00

UDDS LFP 5.43 2.21 7.11 0.00 2.21 7.11 0.00 2.22 7.11 0.00

FFR LFP 2.51 1.99 4.14 0.00 1.99 4.14 0.00 1.99 4.14 0.00

where �i is the standard deviation of the current-sensor noise.

Note that only the current-sensor noise specifications are factors in the coulomb-counting er-

ror. Coulomb counting does not use sensed voltage and no variables in the coulomb-counting

expression are functions of temperature.

3.2 Sigma point Kalman filter

Kalman filters implement a model-based approach to estimating the state of a dynamic system.

When the system whose state is being estimated is nonlinear, the steps of the Kalman filter must

be adjusted to approximate the intent of the original Kalman filter for the nonlinear model. One

approach to doing so uses an extended Kalman filter (EKF) [5, 6]. An alternate approach that

can give better results for highly nonlinear models is the sigma-point Kalman filter (SPKF) [7,

6]. Note that unscented Kalman filters (UKF) and cubature Kalman filters (CKF) are specific

examples of the more general SPKF. In this work, we implemented a central-difference Kalman

filter (CDKF), which is also a specific example of SPKF.

The SPKF repeatedly executes two substeps every measurement interval. First, it uses the ESC

model equations to predict the model state and cell voltage. Then, it compares predicted to

measured voltage and adjusts its state estimate based on this feedback. The details of the SPKF

are presented in the above references, but the critical observation is that voltage feedback is

used to improve the estimates versus those produced by coulomb counting, which does not

incorporate feedback. Whenever the measured voltage contains quality information regarding

cell SOC, we would expect SPKF to outperform coulomb counting. But, when the cell model

or sensed voltage are poor, or when the cell voltage is a weak function of SOC, we might not

expect dramatic improvements.

One feature of SPKF is that the algorithm automatically computes a 3� confidence bound on

its SOC estimates. We consider the estimator to be robust if the true SOC lies within this

confidence bound with high certainty.
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4 SOC estimation results and discussion

4.1 Generating the noisy datasets

Noise-free truth datasets were simulated for each of the three basic scenarios listed in Table 1.

Then, the SOC estimators were executed for each of the eight simulation cases of Table 2 and

three latency levels for each of these scenarios and a subset of possible sensor combinations.

To do so, pseudo-random Gaussian noises were added to the current, voltage, and temperature

per the sensor specifications listed in Table 3. The “max” (and “min”) entries in Table 2 refer

to adding (or subtracting) the dc-bias value defined by the particular sensor’s specification to

(from) the true value.

Cases 1–4 bias the initial SOC estimate 1 % above the true value, bias the capacity at � 1 %

above its true value, and bias the current-sensor in the charging direction. These have the effect

of trying to force the SOC estimate to be greater than the truth at all times (since all profiles

start in the discharge direction). Cases 5–8 bias the estimate in the other direction. These three

variables are always changed together to provide ˙ worst-case results.

Sensor timing latency is assumed to impact only the voltage signal. If the latency is negative,

then changes to cell voltage precede changes to current and SOC (the voltage signal is effec-

tively shifted left compared with the other signals). If the latency is positive, then the voltage

changes lag behind changes to current and SOC (the voltage signal is effectively shifted right

compared with the other signals). Since all of the latencies we considered are integer mul-

tiples of the sampling period (which is 10 ms), these shifts are easily accomplished without

resimulating the synthetic datasets.

This modified dataset is used as input to the SOC-estimation algorithms. We evaluate results

by comparing the estimated SOC to the truth SOC from the original simulation.

4.2 Tuning the SPKF

Note that the SPKF method requires specifying the initial-state covariance matrix † Qx;0, process-

noise covariance matrix †ew , and sensor-noise covariance matrix †Qv. The process of optimizing

these variables is often called ‘tuning the filter.’ If we constrain † Qx;0 to be diagonal, then it has

four elements that must be chosen (the initial uncertainties of the two R–C states, the hysteresis

state, and the SOC state). Each of †ew and †Qv have one element to be chosen. In total, six

‘tuning values’ must be selected. Different sets of tuning values will work best for different

applications, so these six values were optimized independently for each of the simulation sce-

narios and sensor-package combinations. (Thirteen sets of tuning values were optimized for

the results presented in this white paper, corresponding to the thirteen rows of Tables 4–6.)

When tuning the SPKF via an optimization routine, the input data must be consistent in order

for the objective function being optimized also to be consistent. Since the sensor configura-

tions involve random noise, we must somehow convert that randomness into a deterministic

set of battery-cell input/output data to be applied to the SPKF while optimizing its tuning. We

chose to optimize the tuning across the eight pseudo-random ‘simulation cases,’ applied to each

operating-cycle and temperature combination, as listed in Table 2. In all cases, pseudo-random

Gaussian noises are added to the current, voltage, and temperature per the specifications of the

sensors (the random-number-generator seed was reset before input data for the first case were

computed, so that the same pseudo-random values would be generated for each simulation run).
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Fig. 3: Coulomb-counting SOC estimation-error results. The notation ‘SIx’ in the titles indi-

cates that current sensor ‘SIx’ from Table 3 was used when producing that plot’s results.

The ‘max’ (and ‘min’) entries in the table refer to adding (or subtracting) the worst-case dc-bias

value defined by the particular sensor’s specification to (from) the true value.

This tuning process is very important for the SPKF to produce reliable results. Notice however,

that the tuning is accomplished using the worst-case sensor specifications and so the SPKF

does not need to be retuned by every BMS for its own sensor package.

4.3 Results and discussion

Table 4 lists numeric SOC-estimation results. The “RMSE CC” column lists the root-mean-

squared SOC-estimation error using coulomb counting, in percent. This is statistically similar

to a 1� error value. The “RMSE KF” columns list the corresponding result when estimating

SOC using the SPKF.

The “RMSB KF” columns list the root-mean-squared value of the confidence bounds for that

scenario. We would prefer this number to be small, because it indicates that the filter has high
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SPKF SOC-est. err: IVT111, NMC, UDDS, 0ms
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Fig. 4: Subset of SPKF SOC estimation-error results. The notation ‘IVTxyz’ in the titles

indicates that current sensor ‘SIx’, voltage sensor ‘SVy’, and temperature sensor ‘STz’ from

Table 3 were used when producing the results of that plot.

confidence in its estimates. However, we also wish for it to be reliable—if the true error is ever

outside the confidence bounds, then we lose faith in those bounds. The “BNDX KF” column

presents the percent of time that the true error is outside the confidence bounds. Notice that

this is always zero in this table, indicating that we have high confidence that the SPKF method

is performing robustly.

Fig. 3 presents coulomb-counting results in a graphical format. The blue shaded regions are the

confidence regions of the estimate. The black solid line indicates the desired SOC-estimation

error of zero. The colored lines (eight in total) correspond to the eight test cases specified

in Table 2. We notice that the eight test cases divide into two categories since only two col-

ored lines are apparent. In fact, the top line (which appears as blue) is a combination of four

test cases whose SOC-estimation errors are indistinguishable at this scale, and the bottom line

(which appears as purple) is also a combination of four test cases whose results are indistin-

guishable. This verifies that the design objective used to formulate the cases of Table 2 was met.
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It also shows that the confidence region of the coulomb-counting estimate from Eqs. (1)-(2) is

a tight/achievable region.

Fig. 4 presents a subset of the SPKF results. The blue shaded regions again represent the (union

of the) confidence regions of the estimates for the eight simulation cases. The individual-case

responses are usually sufficiently distinct to be distinguished from one another. The voltage

feedback used by the SPKF allows the estimator to recover from initial SOC-estimation errors,

so that the final SOC-estimation error was often lower than the initial error.

Studying the numeric results of Table 4, we make several observations. All else being equal,

the quality of the current sensor directly impacts the RMSE of the coulomb-count estimate.

If an application specifies a maximum permitted SOC-estimation error, this will impose re-

quirements on the measurement error of the current sensor. The quality of the voltage and

temperature sensors have no impact on coulomb counting, since there is no feedback in the

coulomb-counting method and the cell-model quantities involved when estimating SOC using

coulomb counting are not temperature-dependent.

We also notice that the quality of the current sensor has a direct impact on the RMSE of the

SPKF estimate. However, since the SPKF uses voltage feedback, it is relatively insensitive to

errors in the value of total-capacity used in its processing. So, nearly always, the SPKF estima-

tion errors are lower in magnitude than the corresponding coulomb-counting errors. Since the

LFP chemistry has a very flat OCV curve, the value of voltage feedback for LFP applications

is lower than when using nickel-based chemistries such as NMC. However, there still is some

benefit in using the feedback as compared with open-loop coulomb counting. Even so, the LFP

absolute errors tend to be larger than the NMC absolute errors.

Since the SPKF relies on the temperature sensor to select the model parameter values used in

its predictions and since it relies on the voltage sensor for feedback, it is sensitive to the quality

of both of these sensors. All else being equal, as the voltage and current sensors degrade, the

quality of the SPKF estimates also degrade. So, again, if an application specifies a maximum

permitted SOC-estimation error, this will impose requirements on the measurement error of

the current, voltage, and temperature sensors. Perhaps surprisingly, sensor latency as large as

100 ms has very little impact on the SPKF results.

5 SOH-Q: Total-capacity estimation methods

SOH is usually quantified by evaluating changes in cell total capacity and ESR as the cell ages.

We consider these two effects separately.

Total capacity is estimated in a number of ways in the literature. Some methods first estimate

series resistance (or impedance) and then correlate changes in resistance to presumed changes

in capacity (most machine-learning methods follow this approach). They do this because es-

timating resistance/impedance well is relatively simple to do, since resistance/impedance is a

direct contributor to the voltage measurement. However, the assumption that is made in doing

so is that resistance/impedance changes in a deterministic way when capacity changes, which

is not physically true in general.

A physically sound method bases the capacity estimate directly on the cell-model equations.

For example, consider the change in SOC z.t/ between two points in time t1 and t2:

z.t2/ D z.t1/ � 1

Q

Z t2

t1

i.�/ d�;

10
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where i.t/ is applied current and Q is cell total capacity (and we are assuming that � � 1). We

can rearrange this expression to find:

�
Z t2

t1

i.�/ d�

„ ƒ‚ …
y

D Q .z.t2/ � z.t1/„ ƒ‚ …
x

;

where the linear form y D Qx becomes apparent. This observation allows us to apply methods

of linear regression to datasets comprising fx; yg pairs to find an estimate of the total capacity.

We must be careful when doing so: because current sensors are imperfect, the coulomb count

y will have errors; because SOC-estimators produce imperfect results, x will also have errors.

Therefore, it is mathematically incorrect to use standard ordinary least squares regression to

estimate Q; instead, we must use total least squares. Total-least-squares methods are not re-

cursive in the general case and so are impractical to implement on an embedded system like a

BMS. So, approximations or simplifying assumptions must be made. In this white paper, we

compare the standard weighted ordinary least squares method (WLS, which is biased by noises

on the x variable and so should not be used) to the approximate weighted total least squares

method (AWTLS) [8, 6].

In order to implement the methods, we need datasets of fx; yg pairs along with the uncer-

tainties/variances of x and y (�2
x and �2

y ) for each of these scenarios. The variable x is the

difference in SOC estimates between two points in a profile. The quality of the total-capacity

estimate is generally highest when the magnitude of x is maximized. So, for each profile, we

chose the times t1 D 0 and t2 equal to the final time in the profile to maximize the true SOC

difference.

The uncertainty of x is described by �2
x . If we assume that the errors on the SOC estimates at

the beginning and end of the profiles are uncorrelated, then �2
x D �2

z.t1/
C �2

z.t2/
. We compute

the values of �2
z from the “RMSE KF” column in Table 4 as �2

z D .rmse in percent=100/2.

The total-capacity estimates will be best if we can minimize �2
x . If there is ever a point in a

profile where there is no uncertainty regarding the cell’s SOC, we can use that time as t1 and

that SOC as z.t1/, which sets �2
z.t1/

D 0. The UDDS profile has an initial point where the

cell begins the profile with a fixed SOC that we might assume was achieved after a prescribed

charging profile. Therefore, for the UDDS profile we assume �2
z.t1/

D 0. However, the FFR

profile is intended to execute continuously and so we do not assume that �2
z.t1/

D 0. In sum,

�2
x D �2

z for UDDS and �2
x D 2�2

z for the FFR profile.

Then, to compute x we compute an SOC estimate at time t1 as the true SOC at that time plus

a Gaussian random variable having variance �2
z.t1/

and another SOC estimate at time t2 as the

true SOC at that time plus a Gaussian random variable having variance �2
z.t2/

. Then, x is the

difference between these two SOC estimates.

The variable y is (�1 times) the measurement of accumulated ampere hours that pass through

the cell between times t1 and t2. This value is found by coulomb counting.3 The variable �2
y is

the variance of y.

To find �2
y , we use the uncertainty bounds from the final point in the simulation profile when

using coulomb-counting as the SOC-estimation method. We assume that this bound is equal to

3�y , which allows computing �2
y .

3Note, for this reason we cannot use coulomb counting to find z.t1/ and z.t2/ in this method. We will end up

with the result that 1 D 1 and capacity will cancel from the equations. The SPKF method appears to work quite

well for finding estimates of z.t1/ and z.t2/, however.
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Then, to compute y, we use the true change in SOC, multiplied by the true capacity, multiplied

by �1, and then we add to it a Gaussian random variable having variance �2
y .

Simulation setup and results For each of the scenarios, we set up a simulation where

that scenario is executed 1000 times. For every execution, we compute random values of x, y,

�2
x , and �2

y using the approach just described. We then execute the WLS and AWTLS methods

to compute an updated capacity estimate for this iteration (plus confidence bounds). For the

purpose of these simulations, we initialized the capacity estimates at 1:01 � the true capacity,

and did not degrade the true capacity over time.

6 SOH-R0: Resistance estimation methods

6.1 Method 1: The “simple method”

Estimating a cell’s ESR turns out to be relatively simple to do well and quickly with a high-

quality sensor package because it is highly observable from voltage measurements. There are

different approaches in the literature; here, we consider two approaches based on total least

squares.

Consider the cell’s discrete-time voltage equation:

vk D OCV.zk/ C Mhk �
X

i

vci ;k � ikR0:

One approach to estimating R0 is to subtract voltages at two adjacent time samples:

vk D OCV.zk/ C Mhk �
P

i vci ;k � ikR0

vk�1 D OCV.zk�1/ C Mhk�1 �
P

i vci ;k�1 � ik�1R0

vk�vk�1 � R0 .ik�1 � ik/ ,

where we use our knowledge that that cell state of charge zk , diffusion voltages vci ;k , and hys-

teresis hk change relatively slowly compared to how quickly ik changes. So, we can formulate

the ESR estimation problem as:

vk � vk�1„ ƒ‚ …
y

D R0 ik�1 � ik„ ƒ‚ …
x

;

which has the linear form y D R0x. By noting that both y and x have measurement errors,

we recognize that this is again a total-least-squares problem and not a standard ordinary-least-

squares problem. So, we use AWTLS method to estimate ESR based on this model. We call

this the “simple” method.

To implement the method, the variable x at any timestep is simply the difference in current

between the prior and present timestep and the variable y is the difference between the present

and prior voltages. Assuming that measurement noise is white, �2
x is set to twice the variance

of the current-sensor random error and �2
y is set to twice the variance of the voltage-sensor

random error. Measurement dc bias cancels from x and y due to the subtractions used when

computing x and y so does not need to be considered.
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6.2 Method 2: The “SPKF method”

The performance of the “simple method” just presented is expected to degrade when the input

current is constant since the magnitude of ik�1 � ik will then be very small since it will depend

only on measurement noise and not on actual changes to the load current. AWTLS attempts to

provide an intelligent smoothed version of what we might naïvely compute as:

R0 � vk � vk�1

ik�1 � ik

;

which loses quality as ik�1 � ik ! 0. Further, we might expect estimates of R0 to become

meaningless if synchronization between the voltage and current sensors is not exact. Anticipat-

ing this problem, we implemented a second TLS-based method to estimate R0. This method

relies on signals produced by the SPKF state estimator.

To develop the SPKF method, we start with the cell voltage equation, replacing true quantities

with estimates of those quantities from the SPKF, denoted with the “hat” symbol (O�):

Ovk D OCV.Ozk/ C M Ohk �
X

i

Ovci ;k � imeas
k R0;

where Ovci ;k D Ri
OiRi ;k from the estimator. Rearranging,

�
 

Ovk � OCV.Ozk/ � M Ohk C
X

i

Ovci ;k

!

„ ƒ‚ …
y

D R0 imeas
k„ƒ‚…

x

;

where we once again see the linear structure y D R0x, and where both y and x have noises

associated.

To implement a TLS estimator using this relationship, we exported the Ozk , Ohk , and Ovci ;k signals

from the SPKF state estimator, along with their covariances �2
z;k

, �2
h;k

, and �2
vci

;k
. Computing

y is straightforward and x is simply the measured current and no computation is needed to find

its value.

The variance �2
x needed by the TLS method is set to the current-sensor variance †ew tuned to

optimize the SPKF. The time-varying variance �2
y;k

is computed as:

�2
y;k D �2

v C
�

d OCV.Ozk/

d Ozk

�2

�2
z;k C M 2�2

h;k C
X

i

�2
vci

;k;

where �2
v D †Qv, the voltage-sensor variance tune to optimize the SPKF. This computation

assumes that all the uncertainties are uncorrelated (which is unlikely to be true in general).

In summary, we have a new way to present x, y, �2
x , and �2

y to a TLS algorithm to estimate R0.

Again, we used AWTLS in the results presented next.

7 SOH-Q and SOH-R0 estimation results and discussion

This modified dataset from Sect. 4.1 was used as input to the SOC-estimation algorithms. Out-

put SOC estimates and statistics were used as inputs to the SOH estimates. We evaluate results

by comparing the estimated SOH (total capacity or ESR) to the truth SOH from the original

simulation.
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Fig. 5: Subset of capacity-estimation results. The notation ‘IVTxyz’ in the titles indicates that

current sensor ‘SIx’, voltage sensor ‘SVy’, and temperature sensor ‘STz’ from Table 3 were

used when producing the results of that plot.

7.1 SOH-Q: SOH represented by total-capacity estimate

Table 5 lists the numeric total-capacity-estimation results. It presents RMSE between true

and estimated total capacity for the WLS and AWTLS methods, computed over the final 200

timesteps of each simulation. The table also lists the percentage of time that the total-capacity

confidence bounds do not encompass the true total capacity. We would like both of these

quantities to be low. From the table, we see that sensor synchronization latency has negligible

effect on the quality of the total-capacity estimates.

Fig. 5 shows the evolution of the total-capacity estimates plus their confidence bounds over

time for some interesting cases. The plots present normalized estimates, bQ=Q, so the ideal

result is always 1.0. From the top row, we observe that the estimates degrade when the voltage

and temperature sensors are less accurate; from the left column we observe a similar trend when

the current sensor is less accurate. The illustrated cases also show examples where the WLS

method fails (either it converges to the wrong value or its confidence interval is too narrow).

AWTLS should be used instead.

7.2 SOH-R0: SOH represented by equivalent-series-resistance estimate

Table 6 lists the numeric ESR-estimation results. It presents RMSE between true and estimated

resistance for the simple and SPKF methods and also lists the percentage of time that the

estimator confidence bounds do not encompass the true ESR.

Fig. 6 shows the evolution of the resistance estimates over time for two example cases that use

the simple method. Each frame shows eight thick lines illustrating the R0 estimates evolving
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Fig. 6: Subset of R0 estimation results using the simple method. The notation ‘IVTxyz’ in the

titles indicates that current sensor ‘SIx’, voltage sensor ‘SVy’, and temperature sensor ‘STz’

from Table 3 were used when producing the results of that plot.

over time for the eight cases of Table 2. Thin lines of the same color draw the confidence

bounds predicted by the estimator. Note that the plots are for normalized estimates, bR0=R0, so

the ideal result is always 1.0. We observe that the simple method consistently fails when there

is latency between the voltage and current sensors—its estimates are close to zero since the

asynchronous voltage and current signals have essentially no correlation. The simple method

even struggles when the measurements are synchronized; its estimates have low RMSE but its

confidence intervals are too narrow.

Fig. 7 illustrates several results using the SPKF method. As with the simple method, the SPKF

method performs best in the no-latency case but performance degrades gracefully and more

robustly when the magnitude of latency increases. Because the SPKF is a filter, it provides

estimates of Ozk , Ohk , and Ovci ;k that are reasonable, despite the timing latencies. Therefore, the

overall net voltage depression caused by average current multiplied by R0 becomes observable,

whereas the simple method relies on unfiltered instantaneous changes in voltage and current.

The biggest shortcoming of the SPKF method is that its confidence intervals are very wide
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Fig. 7: Subset of R0 estimation results using the SPKF method. The notation ‘IVTxyz’ in the

titles indicates that current sensor ‘SIx’, voltage sensor ‘SVy’, and temperature sensor ‘STz’

from Table 3 were used when producing the results of that plot.

and do not converge quickly over the course of the simulations. Given longer datasets, we

believe that the SPKF method would improve its estimates and confidence windows, although

this remains a topic of future work.

7.3 Discussion

Studying the numeric results of Tables 5 and 6, we make several observations. All else being

equal, the quality of the sensors directly impacts the RMSE of the SOH estimates. High-

accuracy synchronized sensors enable high-accuracy SOH estimates with reliable confidence

intervals. Degrading any of the sensors causes a resulting degradation in the quality of the

SOH estimates. Losing synchronization between voltage and current measurements is likely to

degrade resistance estimates unless advanced methods (such as the SPKF approach presented

here) are implemented. As a general rule, if an application specifies a maximum permitted

SOH-estimation error, this will impose requirements on the measurement error and synchro-

nization of the sensors.

8 Summary

This white paper has presented a framework for evaluating the impact of sensor measurement

error and synchronization latency on SOC- and SOH-estimation results. It has applied that

framework to a combination of scenarios encompassing automotive and energy-storage use

cases for different sensor error levels and latencies. The study has confirmed in a quantitive
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way the intuitive expectation that better sensors enable better results. This implies that appli-

cations which specify maximum permitted SOC- and SOH-estimation error will have referred

requirements imposed on the quality of the sensing subsystem of the BMS. Some high-level

direct observations and conclusions are:

� SOC estimates made using coulomb counting do not incorporate voltage or temperature

measurements, so are independent of the quality of the voltage and temperature sensors

and are not affected by timing latency between the voltage and current measurements.

� SOC estimates made using SPKF use measured voltage via a (temperature-dependent)

model-based feedback mechanism and so are affected by the quality of voltage and tem-

perature sensors. Comparing the results from the ‘111’ and ‘322’ sensor packages listed

in Table 4, we see that the RMSEs for the high-quality sensor package are on the order of

1/3 of those for the low-quality sensor package. Error bounds are also much tighter for

the 111 case, indicating that the SPFK had much more confidence in its estimates when

using the high-quality sensor package. The SOC estimates are not affected by timing

latencies as high as ˙100 ms between voltage and current measurements.

� SOC estimates made using SPKF were generally better than those made using coulomb

counting, but the degree of improvement depended on the flatness of the cell’s open-

circuit-voltage curve. A disadvantage of SPKF is that it is important that the filters be

tuned for the expected application and sensor systems, as described in Sect. 4.2. How-

ever, this tuning can be done off-line using worst-case sensor specifications and does not

need to be done online by every BMS for its specific sensor package.

� Total-capacity estimates made using ordinary weighted least squares (WLS) ignore the

presence of uncertainty on the SOC estimates used as inputs to the method; therefore,

WLS fails to provide robust and reliable SOH-Q.

� Total-capacity estimates made using AWTLS incorporate the uncertainty of the SOC

estimates in their computations and so succeed in providing robust and reliable SOH-Q.

Since the quality of the total-capacity estimate depends directly on the quality of the SOC

estimates used as input, a high-quality sensor package enables better estimates of cell

total capacity than a low-quality sensor package. Total-capacity estimates are not affected

by timing latencies as high as ˙100 ms between voltage and current measurements.

� Unlike SOC and SOH-Q, estimates of SOH-R0 (i.e., ESR) are strongly affected by timing

latencies between the voltage and current measurements when using the ‘simple method.’

Synchronization is very important if we are to achieve meaningful ESR estimates.

� When estimating SOH-R0 using the ‘SPKF method,’ the level of synchronization be-

tween voltage and current measurements is not as critical, but the confidence bounds are

much wider than those from the ‘simple method’ and so the value of the estimate—even

though robust—is questionable. We notice again from Table 6 that the quality of the ESR

estimate is highly dependent on the quality of the sensor package that is being used.

Some inferred conclusions are:

� As a general rule, if an application specifies a maximum permitted SOC- or SOH-estima-

tion error, this will impose requirements on the measurement error and synchronization of

the sensors. If it specifies a maximum permitted 3� confidence interval on the estimates,

this additionally places requirements on the quality of the sensors.
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� Since battery available energy is a function of SOC and total capacity, the quality of es-

timates of available energy will depend on the quality of the SOC and SOH-Q estimates.

If a BMS is computing available energy along with a confidence on that computation,

then we would like for the SOC and SOH-Q estimates to be very good and to have tight

confidence intervals. This requires a high-quality sensor subsystem.

� Also, since battery available power is a function of SOC and ESR, the quality of estimates

of available power will depend on the quality of the SOC and SOH-R0 estimates. If a

BMS is computing available power along with a confidence on that computation, then

we would like for the SOC and SOH-R0 estimates to be very good and to have tight

confidence intervals. This requires a high-quality sensor subsystem, preferably with little

or no timing latency between the voltage and current measurements.

� Battery phyical health is a complicated function of the specific electrochemical and me-

chanical degradation factors that it has encountered over its lifetime. Often, SOH-Q

and SOH-R0 are used as surrogates for summarizing important aspects of battery health.

Therefore, it is important that estimates of both SOH-Q and SOH-R0 be as accurate and

robust as possible. As already mentioned, this requires a high-quality sensor system.

References

[1] G. L. Plett and G. McVeigh, “Sensitivity of lithium-ion battery SOC estimates to sensor

measurement error and latency,” in Proc. 4th International Conference on Electrical, Com-

puter, and Energy Technologies (ICECET 2024), (Sydney, Australia), July 2024.

[2] G. L. Plett and G. McVeigh, “Sensitivity of lithium-ion battery SOH estimates to sensor

measurement error and latency,” in Proc. 4th International Conference on Electrical, Com-

puter, and Energy Technologies (ICECET 2024), (Sydney, Australia), July 2024.

[3] G. L. Plett, Battery Management Systems, Vol. 1: Battery Modeling. Artech House, 2015.

[4] G. L. Plett, “Review and some perspectives on different methods to estimate state of charge

of lithium-ion batteries,” J. Automotive Safety and Energy, vol. 10, no. 3, pp. 249–72, 2019.

[5] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based

HEV battery packs—Part 2: Modeling and identification,” Journal of Power Sources,

vol. 134, pp. 262–76, August 2004.

[6] G. L. Plett, Battery Management Systems, Vol. 2: Equivalent-Circuit Methods. Artech

House, 2015.

[7] G. L. Plett, “Sigma-point Kalman filtering for battery management systems of LiPB-

based HEV battery packs: Part 1. Introduction and state estimation,” J. of Power Sources,

vol. 152, no. 2, pp. 1356–1368, 2006.

[8] G. L. Plett, “Recursive approximate weighted total least squares estimation of battery cell

total capacity,” Journal of Power Sources, vol. 196, pp. 2319–2331, 2011.

20



© Dukosi Limited 2024 

Distribution 

© Dukosi Limited 2024. All rights reserved. Material presented here may not be copied, reproduced, modified, merged, 
translated, stored, or used without prior consent from the copyright owner. All products and groups mentioned are 
trademarks or registered trademarks of their respective organizations. 

Contact Dukosi 
 www.dukosi.com 

info@dukosi.com 

http://www.dukosi.com/
mailto:info@dukosi.com
Dimitris Katsenos
Highlight




