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INTRODUCTION[1–3]
 A battery-management system (BMS) for a lithium-ion battery pack must compute 

estimates of all cell SOCs, SOHs, and SOPs, which cannot be measured directly.
 These estimates must be based on measurements of voltage, current, and temperature.
 Sensors measuring these values are characterized by their

precision, accuracy, and synchronicity.
 The research question that we address in this poster is: 

How does the quality of SOC, SOH, and SOP estimates 
depend on sensor total measurement error (TME) and 
synchronization error when using coulomb counting 
or SPKF to make the SOC estimates, total-least-squares 
methods to make the SOH estimates, and bisection to 
make the SOP estimates? 

 We use a simulation-based approach:
 Generate synthetic “truth” dataset based on an ECM.
 Add measurement and synchronization errors to 

outputs from the truth dataset.
 Use this modified dataset with coulomb-counting and 

SPKF SOC-estimation methods.
 Apply SOH-Q and SOH-R0 estimation methods.
 Execute bisection to compute SOP.
 Evaluate estimates by comparing them to the true SOC, 

SOH, and SOP from the original truth dataset.
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 Combinations of good (state-of-the-art), 
medium, and best sensors were simulated 
in making the “noisy” datasets.
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 Eight algorithm cases were considered, 
having different random typical-
magnitude ECM parameter errors

 Latencies of 0, ±10, and ±100 ms between current-sensor and other measurements were 
also considered when creating noisy datasets.

SUMMARY

 The synthetic “truth” dataset was generated by simulating an 
equivalent-circuit model (ECM) of a lithium-ion battery cell. 
 The models used to generate the truth dataset incorporated three 

R–C pairs and were fit to data from two actual LFP and NMC cells.
 Two battery usage profiles were simulated: 
 Urban dynamometer driving schedule 

(UDDS, for automotive);
 Fast frequency response (FFR, for 

energy storage).
 The UDDS profile was used with both LFP

and NMC cells; the FFR profile was used only with LFP cells, as we believe to be typical.

 Blue shaded areas show uncertainty boundary
 Sample CC results are shown in rows 1 & 2
 Results exhibit near-worst-case uncertainties.
 SOC-estimate accuracy and uncertainty

depend strongly on current-sensor TME.
 SPKF results, rows 3 & 4, show more variation.
 Voltage feedback improves estimates; 

error bounds are tighter as well.
 Overall, CC is always worse than SPKF, but 

not by much for LFP when SPKF uses poorer 
voltage sensor or when both methods use 
poorer current sensors. 
 SPKF struggles with LFP as voltage contains 

little information value; SPKF 
estimates are only slightly 
better than CC estimates.
 Current/voltage latency has 

no impact on CC and remarkably 
little impact on SPKF.
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 Sample SOH-Q results are shown; SOC-SPKF was used.
 WLS produces biased results—if the current sensor is 

poor, the bias can be significant.
 Voltage- and temperature-sensor inaccuracies have a 

vicarious impact through derated SOC estimates.
 AWTLS produces excellent results, with low sensitivity 

to sensor error and latency.
 Sensor TME caused only small 

variation in 𝑄𝑄 estimates when 
using AWTLS with SPFK-SOC 
since the recursive methods 
can overcome some sensor 
limitations via voltage feedback.
 Two sample SOH-R0 “simple” method are shown.
 Solid = simulation “cases,” thin = confidence bounds.
 With no latency between current and voltage,
𝑅𝑅0 estimate is generally good, otherwise it fails.

 Four sample SOH-R0 “SPKF” are shown:
 Estimates for the (high-voltage-variation) NMC cell 

are very good, and confidence bounds are reliable.
 Estimates for (low-voltage-variation) LFP cell are 

less accurate, but confidence bounds are still reliable.
 Strong dependence between 

current-sensor accuracy
and SOH-R0 accuracy.
 Latency also degrades 

estimates, but not as much as 
for the “simple” method.
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 Six sample SOP results are shown: Solid/dash = dis/charge.
 Black solid/dash lines are truth power levels.

 High-accuracy synchronized sensors enable high-accuracy 
SOP estimates that rarely overpredict true available power. 

 This poster presents a simulation framework for evaluating the effect of sensor total 
measurement error and synchronization error on SOC/SOH (𝑄𝑄 and 𝑅𝑅0)/SOP-estimates.
 For the scenarios that we considered, the study confirmed in a quantitative way the 

intuitive expectation that better sensors enable better estimates and bounds. 
 Consequently, a BMS that uses better sensors does not require that the battery pack be 

designed with excess capacity to compensate for poor sensing, reducing overall cost, 
improving sustainability, and improving usable energy of the battery. 
 This also implies that applications which specify maximum permitted SOx-estimation error 

will have referred requirements imposed on the quality of the sensing subsystem of the 
BMS. The proposed framework can be used to develop sensor requirements.

 All methods are based on ECMs having two R–C pairs to account for model/cell mismatch.

 For SOC, coulomb counting (CC) estimates cell SOC by integrating charge into/out of cell.
 The sigma-point Kalman filter (SPKF) uses voltage feedback to update the open-loop  pre- 

dictions made by CC, and if properly implemented will always be more robust than CC.

 SOH-Q (“WLS”/“AWTLS”): The difference in cell SOC between two time points is:
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𝑡𝑡1

𝑡𝑡2
𝑖𝑖 𝜏𝜏 𝑑𝑑𝜏𝜏

 𝑦𝑦
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𝑥𝑥

 Data can be regressed to the linear form 𝑦𝑦=𝑄𝑄𝑥𝑥 to estimate 𝑄𝑄; must use TLS (not LS).
 SOH-R0 (“simple”): Change in voltage between timesteps can be approximated as:

𝑣𝑣𝑘𝑘 − 𝑣𝑣𝑘𝑘−1
 𝑦𝑦

≈ 𝑅𝑅0(𝑖𝑖𝑘𝑘−1 − 𝑖𝑖𝑘𝑘)

𝑥𝑥

 SOH-R0 (“SPKF”): Using a full cell model, voltages at different timesteps can be written as:
− �𝑣𝑣𝑘𝑘 − OCV �̂�𝑧𝑘𝑘 − 𝑀𝑀�ℎ𝑘𝑘 + �

𝑖𝑖
�𝑣𝑣𝑐𝑐𝑖𝑖,𝑘𝑘

 𝑦𝑦

 = 𝑅𝑅0 𝑖𝑖𝑘𝑘meas
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 For both, data can be regressed to the linear form 𝑦𝑦 = 𝑅𝑅0𝑥𝑥 to estimate 𝑅𝑅0; must use TLS. 

 For SOP, the cell model computes future voltage 𝑣𝑣(𝑡𝑡 + 𝑇𝑇) using 𝑅𝑅0 = �𝑅𝑅0 + 3𝜎𝜎𝑅𝑅0 from the 
SOH-R0 estimator (“simple” or “SPKF”) for candidate levels of dis/charge current.
 Maximum current is found by bisecting until 𝑣𝑣 𝑡𝑡 + 𝑇𝑇 = 𝑣𝑣min or 𝑣𝑣 𝑡𝑡 + 𝑇𝑇 = 𝑣𝑣max.
 Maximum dis/charge power is computed based on this current and future voltage.
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“Simple” fails when 
latency is nonzero

“SPKF” succeeds even 
when latency is nonzero
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